

Reg. No. :						
_	 	 	 	 		

Question Paper Code: X 67625

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020 Seventh Semester

Mechanical Engineering

ME 1401 – FINITE ELEMENT ANALYSIS

(Common to Automobile Engineering) (Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Write any four applications of FEM in engineering problems.
- 2. What is Ritz technique?
- 3. State the principle followed in Galarkin method used to solve a problem in structural mechanics.
- 4. What are the features of shape functions and why is the summation of shape functions equal to unity?
- 5. Give the Jacobian matrix for a constant strain triangular (CST) element and state its significance.
- 6. What is meant by consistent and lumped mass strategy?
- 7. Define element capacitance matrix for unsteady state heat transfer problem.
- 8. State the conditions to be satisfied in order to use axisymmetric elements.
- 9. Distinguish sub parametric and super parametric elements.
- 10. Define band width.

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) Determine the deflection at the centre of a simply supported beam of span length/subjected to uniformly distributed load throughout its length as shown in figure. Use Rayleigh-Ritz method. (16)

b) Solve the equations using Gauss-Elmination method. (16)

$$2x_1 + 4x_2 + 2x_3 = 15$$

 $2x_1 + x_2 + 2x_3 = -5$
 $4x_1 + x_2 - 2x_3 = 0$.

12. a) A link of 2 m, pin-jointed at one end, is rotating at angular velocity 5 rad/sec. The cross-sectional area of link is 2×10^{-3} m². Determine the nodal displacements using two linear spar elements. Take E = 200 GPa and ρ = 7850 kg/m⁻³.

(OR)

b) Each of the three bars of the pin-jointed frame shown in fig. 1 has a cross-sectional area of 1000 mm^2 with E = 200 Gpa. Solve for the displacements.

(8)

13. a) Determine the stiffness matrix for the Constant Strain Triangular (CST) element shown in Fig. Q. 13 (a) the co-ordinates are given in Units of millimeters assume plane stress conditions. Take $E=210~\mathrm{GPa}~0.25$ and $t=10~\mathrm{mm}$.

-3-

- b) Consider heat Transfer in a plane wall of total thickness L. The left surface is maintained at temperature T_0 and the right surface is exposed to ambient temperature T_∞ with heat transfer Coefficient β . Determine the temperature distribution in the wall and heat input at the left surface of the wall for the following data: L = 0.1 m, k = 0.01 W/m°C, β = 25 W/m²C, T_0 = 50°C, and T_∞ = 5° SC. Solve for nodal temperatures and the heat at the left wall using two linear finite elements.
- 14. a) i) Derive the expression for consistent load vector due to self-weight in a CST element. (8)
 - ii) Find the expression for nodal vector in a CST element subject to pressures Px_1 , Py_1 on side 1, Px_2 , Py_2 on side 2, Px_3 Py_3 on side 3 as shown in Fig. Q. 14 (a) (ii) .

- b) Briefly discuss about finite element modelling for axisymmetric solid and also derive the expression for the element stiffness matrix for an axisymmetric shell element.
- 15. a) i) Derive the isoparametric representation for a triangular element. (10)
 - ii) Write short notes on lagrangean and serendipity elements. (6)
 (OR)
 - b) i) Explain the one point and two point Gaussian quadrature methods of numerical integration. (8)
 - ii) Derive the interpolation function of a corner node in cubic serendipity element. (8)